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Abstract 

Childhood psychotic symptoms are associated with increased rates of schizophrenia, other psychiatric 

disorders, and suicide attempts in adulthood; thus, elucidating early risk indicators is crucial to target 

prevention efforts. There is considerable discordance for psychotic symptoms between monozygotic 

twins, indicating that child-specific non-genetic factors must be involved. Epigenetic processes may 

constitute one of these factors and have not yet been investigated in relation to childhood psychotic 

symptoms. Therefore, this study explored whether differences in DNA methylation at age 10 were 

associated with monozygotic twin discordance for psychotic symptoms at age 12. The Environmental Risk 

(E-Risk) Longitudinal Twin Study cohort of 2,232 children (1,116 twin pairs) was assessed for age-12 

psychotic symptoms and 24 monozygotic twin pairs discordant for symptoms were identified for 
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methylomic comparison. Children provided buccal samples at ages 5 and 10. DNA was bisulfite modified 

and DNA methylation was quantified using the Infinium HumanMethylation450 array. Differentially 

methylated positions (DMPs) associated with psychotic symptoms were subsequently tested in post-

mortem prefrontal cortex tissue from adult schizophrenia patients and age-matched controls. Site-specific 

DNA methylation differences were observed at age 10 between monozygotic twins discordant for age-12 

psychotic symptoms. Similar DMPs were not found at age 5. The top-ranked psychosis-associated DMP 

(cg23933044), located in the promoter of the C5ORF42 gene, was also hypomethylated in post-mortem 

prefrontal cortex brain tissue from schizophrenia patients compared to unaffected controls. These data 

tentatively suggest that epigenetic variation in peripheral tissue is associated with childhood psychotic 

symptoms and may indicate susceptibility to schizophrenia and other mental health problems. 

 

Keywords 

biomarker; DNA methylation; epigenetics; longitudinal study; psychosis; schizophrenia; twins. 
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Introduction 

Psychotic symptoms are reported by approximately 1 in 20 children at around 12 years of age
1
 and 

include paranoid thoughts, hearing or seeing things that others do not, and believing that others can read 

one‘s mind or vice versa. These symptoms often occur in children without a diagnosable illness but tend 

to be distressing
2
 and are highly predictive of schizophrenia, other psychiatric disorders, and suicide 

attempts in adulthood,
3
 as well as self-harm

1
 and suicide attempts

4
 in adolescence. Therefore, the 

etiology of these early psychotic symptoms requires further investigation. Understanding biological 

markers of childhood psychotic symptoms may facilitate the early detection of individuals at risk of 

developing severely disabling and life-threatening mental health problems and improve targeting of 

preventive interventions. Moreover, focusing on pre-clinical psychotic symptoms occurring early in life 

negates the effect of other potential confounders, including anti-psychotic medications, exposure to 

disorder-related traumatic events, such as forced hospitalization, and smoking, which are likely to 

influence epigenetic studies of adult schizophrenia patients.
5
 

Quantitative genetic studies of childhood psychotic symptoms demonstrate higher concordance 

rates in monozygotic (MZ) (43%) than dizygotic (DZ) (22%) twins, highlighting a significant genetic 

influence on these symptoms.
1
 Despite this, there is still considerable discordance for psychotic 

symptoms within MZ twin-pairs,
1,6

 indicating that child-specific non-genetic factors are also important in 

mediating their onset. Epigenetic processes may constitute such a factor. Recent studies have started to 

investigate the role of epigenetic processes—acting to developmentally regulate gene expression via 

DNA, histone proteins, and chromatin modifications—in complex disease phenotypes. Epigenetic 

variation identified in post-mortem brain tissue has been associated with several neuropsychiatric 

conditions, including schizophrenia and other psychotic disorders in adults.
7-10

 Moreover, DNA 

methylation differences in peripheral tissue have been found in individuals with schizophrenia compared 

to unaffected controls.
11-13

 

To date, epigenetic variation has not been explored in relation to childhood psychotic symptoms. 

Therefore, the aim of this study was to explore whether methylomic variation in early childhood 

(measured at ages 5 and 10) is associated with MZ twin discordance for psychotic symptoms at age 12. 
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The use of symptom-discordant MZ twins represents a powerful strategy in epigenetic epidemiology 

because identical twins are matched for genotype, age, sex, paternal age, population cohort effects, and 

exposure to several shared environmental factors.
14

 DNA methylation differences are detectable between 

MZ twins in early childhood
15

 and can change over a relatively short period of time,
15,16

 suggesting they 

may be markers of phenotypic variation. Indeed, DNA methylation differences in peripheral tissue 

samples have been associated with MZ twin discordance for several complex neuropsychiatric traits, 

including psychosis,
17

 autism,
18

 and depression.
19

 By utilizing prospectively collected epigenomic and 

phenotypic data we were able to examine the temporal relationship between epigenetic variation and 

onset of psychotic symptoms. Finally, given the tissue-specific nature of epigenetic processes, we aimed 

to explore whether differential methylation patterns associated with childhood psychotic symptoms in 

peripheral DNA samples reflect schizophrenia-associated variation in post-mortem brain tissue. 

Results 

DNA methylation differences at age 10 in MZ twins discordant for age-12 psychotic symptoms 

As expected, within-twin patterns of DNA methylation at age 10 were highly correlated across all MZ pairs 

(across all 391,565 probes included in the analysis, the average within-twin Pearson‘s r=0.98) and no 

difference in overall mean DNA methylation (calculated by averaging across all analyzed probes) was 

observed between affected and unaffected twins (P=0.61), indicating that childhood psychotic symptoms 

are not associated with any systemic changes in DNA methylation. In contrast, DNA methylation at 

individual CpG sites demonstrated considerable variability within discordant MZ twin pairs 

(supplementary figure 1B). Table 1 shows the top ten DMPs at age 10, which were associated with 

psychotic symptoms at age 12 (nominal P<5x10
-5

), with a more extensive list of DMPs (nominal P<0.001) 

given in supplementary table 1. The top-ranked DMPs were characterized by consistent psychosis-

associated within-pair differences in DNA methylation across the twin pairs (figure 1A). The top-ranked 

DMP, cg23933044, located in the promoter regulatory region of C5ORF42, was characterized by reduced 

DNA methylation in affected twins compared with their unaffected co-twins (mean Δβ=-0.034, P=6.76x10
-

7
) (figure 2A). The analyses were re-run for the top-ranked DMPs (P<5x10

-5
) adjusting for internalizing 
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and externalizing problems at age 10 and depression symptoms at age 12, with minimal effect on the 

reported associations (see supplementary table 2). 

We next tested the specificity of our psychosis-associated DMPs by comparing average within-

twin DNA methylation differences at the top ten loci in 20 age-matched concordant unaffected MZ twin 

pairs where neither twin had psychotic symptoms at age 12. DNA methylation data was available for 9/10 

top-ranked psychosis-associated DMPs. Average within-twin Δβ were significantly larger in the psychosis-

discordant twins compared to twins concordant for no psychotic symptoms (P<0.005 for all comparisons, 

see figure 1B). 

Gene ontology (GO) enrichment analysis identified 128 nominally significant enriched terms (see 

supplementary table 3 for genes included in the analysis) for the DMPs (P<0.001) identified in the age 

10 analysis, including several related to the etiology of psychosis, such as glutamatergic synaptic 

transmission (GO:0051966, P=0.0034) and neuron projection development (GO:0031175, P=0.0064). 

However, no enrichment term remained significant after Bonferroni correction for multiple testing. 

Investigating top-ranked age-10 DMPs in schizophrenia post-mortem brain tissue 

We examined DNA methylation at the top-ranked age-10 DMPs identified in our twin study (nominal 

P<5x10
-5

) in prefrontal cortex (PFC) samples from two independent cohorts of adult schizophrenia 

patients and matched non-psychiatric control samples (total n=38 schizophrenia and n=38 control 

samples; see supplementary table 4). The top-ranked DMP associated with childhood psychotic 

symptoms (cg2393304) was also significantly hypomethylated (Mean ∆β=-0.021, P=0.0005, Bonferroni 

adjusted P value=0.013) in a fixed-effects meta-analysis of the two independent PFC brain cohorts 

(figure 2). No significant differences in the PFC were observed for the other top-ranked age-10 

discordant-twin DMPs. 

DNA methylation differences at age 5 in discordant MZ twins 

We next assessed DNA methylation at age 5 in the majority of twin pairs profiled at age 10 (n=18) in 

order to investigate whether site-specific DNA methylation differences between MZ twins discordant for 

age-12 psychotic symptoms were also present at this earlier age. Table 2 shows within-pair DMPs at age 

5 nominally associated with psychotic symptoms at age 12 (P<5x10
-5

), with a more extensive list of DMPs 
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(nominal P<0.001) given in supplementary table 5. None of the top-ranked age-10 DMPs (nominal 

P<5x10
-5

) were characterized by significant within-pair differences at age 5 (table 1). There was no 

correlation in effect sizes between ages 5 and 10 for these loci (r=0.09, P=0.76). Next, we examined 

within-pair differences at age 10 at the top-ranked DMPs identified at age 5. Top-ranking DMP 

(cg10377582), located in the POU6F1 gene (Mean ∆β=-0.077, P=3.03x10
-5

), identified in the age-5 

analysis was also nominally significantly hypomethylated at age 10 (Mean ∆β=-0.04, P=0.047). However, 

overall, there was no correlation in effect sizes between ages 5 and 10 for these loci (r=0.2, P=0.57). 

None of the top-ranked DMPs (P<5x10
-5

) at age 5 were associated with schizophrenia in our PFC 

schizophrenia meta-analysis. 

Changes in DNA methylation between ages 5 and 10 in discordant MZ twins 

Finally, we examined CpG sites characterized by psychosis-associated intra-individual changes in DNA 

methylation between ages 5 and 10. For each probe, we calculated the change in DNA methylation from 

age 5 to age 10 (longitudinal ∆β) for each individual and examined the difference in longitudinal ∆β 

between affected twins and their unaffected co-twin. Table 3 lists the top-ranked ∆β between ages 5 and 

10 associated with age-12 psychotic symptoms (P<5x10
-5

), with a more extensive list of DMPs (nominal 

P<0.001) in supplementary table 6. The top-ranked probe (cg15797527), located in the Abelson helper 

integration-1 (AHI1) gene, was characterized by increased DNA methylation from ages 5 to 10 in affected 

twins compared to their unaffected co-twin (longitudinal ∆β=0.084; P=4.30x10
-6

). However, DNA 

methylation at this position was not associated with schizophrenia in our PFC samples (P=0.678). GO 

term enrichment analysis found 67 nominally significant enriched categories for the DMPs (P<0.001) 

identified in the longitudinal analysis (see supplementary table 7 for full gene list), with the top enriched 

GO categories relating to the presynaptic membrane (GO:0042734, P=0.0032) and the perikaryon 

(GO:0043204, P=0.0035). However, no enrichment term remained significant after Bonferroni correction 

for multiple testing. 

Discussion 

This is the first study to assess epigenetic variation in MZ twins discordant for childhood psychotic 

symptoms. We first examined genome-wide patterns of DNA methylation in buccal cell samples collected 
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at age 10. The top-ranked DMP (cg23933044), which is hypomethylated in twins reporting psychotic 

symptoms at age 12 compared to their unaffected co-twin, is located in the promoter regulatory region of 

the protein coding gene C5ORF42 overlapping a number of transcription factor binding sites (TFBSs). 

Interestingly, the same CpG site is significantly hypomethylated in post-mortem PFC samples from 

schizophrenia patients compared with matched control subjects. C5ORF42 encodes a highly conserved 

3,198 amino acid protein whose function is largely uncharacterized, although it is known to interact with 

genes important for neural development, including the p21-activating kinase 1 (PAK1) and the small 

ubiquitin-like modifier 1 (SUMO1).
20

 BioGPS, an online gene annotation resource, indicates that 

C5ORF42 is widely expressed in a variety of tissues, including the brain and peripheral tissues.
21

 Of note, 

mutations in C5ORF42 cause Joubert syndrome, a severe neurodevelopmental disorder,
20,22

 which can 

result in developmental delays similar to those seen in some individuals who have childhood psychotic 

symptoms or are later diagnosed with schizophrenia.
23

 

Several of the other top-ranked DMPs identified at age 10 are located in the vicinity of genes that 

have previously been implicated in neurodevelopment and psychiatric disorders. For example, 

cg08263941, which is hypermethylated in affected twins compared to their unaffected co-twin, is located 

upstream of CHRM2, a gene implicated in memory and cognition and whose function is impaired in many 

neuropsychiatric disorders.
24-26

 Similarly, cg14133557, which is hypermethylated in affected twins 

compared to their unaffected co-twin, is located in the promoter of LPAR1, a gene important for cellular 

signaling; a Lpar1 null mouse model has been shown to exhibit a schizophrenia-like pathology.
27

 

Furthermore, DMPs cg05318275 and cg12252412 are associated with genes encoding two of the 

α2 adrenergic receptors (ADRA1A and ADRA2A, respectively). These receptors have a role in 

regulating neurotransmitter release from sympathetic nerves and from adrenergic neurons in the central 

nervous system and have previously been implicated in psychiatric disorders.
28,29

 Finally, GO enrichment 

analysis highlighted significant enrichment for pathways associated with neurological processes, such as 

establishment of cell polarity and neuron projection development. 

None of the top-ranked DMPs identified at age 10 show significant within-pair differences at age 

5. We therefore examined psychosis-associated intra-individual changes in DNA methylation between 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

ri
st

ol
] 

at
 0

5:
01

 2
0 

O
ct

ob
er

 2
01

5 

http://en.wikipedia.org/wiki/Neurotransmitter
http://en.wikipedia.org/wiki/Sympathetic_nerves
http://en.wikipedia.org/wiki/Central_nervous_system
http://en.wikipedia.org/wiki/Central_nervous_system


 

8 

 

ages 5 and 10. The top-ranked longitudinal DMP (cg15797527), which was significantly hypermethylated 

from age 5 to age 10 in the affected twins compared to their unaffected co-twins, is located in the AHI1 

gene. AHI1 is required for both cerebellar and cortical development in humans and has previously been 

associated with schizophrenia,
30-32

 autism,
33

 and Joubert syndrome-related disorders.
34

 Genes annotated 

to the most DMPs between ages 5 and 10 in twins who went on to display psychotic symptoms 

highlighted significant GO term enrichment for neuronal cellular components including the bulbous end of 

neurons (perikaryon) and the presynaptic membrane, suggesting that epigenetic variation at these loci 

may be associated with neuronal dysfunction. Interestingly, previous imaging studies have reported 

dysregulated presynaptic membrane expression of key neurotransmitters in first-episode psychosis.
35

 

Methodological considerations 

Despite the power of the discordant MZ twin approach for epigenetic epidemiology, there are several 

limitations to this study. First, only seven psychotic symptoms were assessed. However, the questions 

used are well-established and have been validated and used previously in studies of psychotic 

phenomena in children.
2,36-39

 Second, we could not ascertain the precise timing of the symptoms, as they 

were not inquired about until age 12. We therefore cannot conclude that the differences identified at age 

10 predate the onset of psychotic symptoms, nor can we exclude the possibility of reverse causality. 

However, age 11-12 is thought to be the youngest age when children can understand the psychosis 

interview and provide valid responses.
1
 Third, our analysis utilized a small cohort of 48 twin children (24 

MZ pairs) and is relatively underpowered to detect small changes in DNA methylation. Although no probe 

reached Bonferroni-corrected levels of significance, DNA methylation studies in other psychiatric 

phenotypes (and complex disorders in general) report similarly small absolute differences, and given the 

known non-independence of DNA methylation across the probes represented on the array,
40

 it is likely 

that conventional methods of global statistical significance are not optimal for these analyses. We also 

therefore calculated empirical P values for each of the top-ranked probes using a permutation testing 

approach as an alternative approach to assess significance.
41

 Fourth, as epigenetic studies cannot be 

performed in the brains of live children, the genome-wide data generated in this study are from peripheral 

buccal cell DNA rather than the brain. However, buccal cells were selected as the most suitable 
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peripheral tissue because they derive from the same embryonic cells as brain tissue (ectoderm) and have 

less cellular heterogeneity compared with blood.
42

 Although there are well-documented tissue-specific 

differences in DNA methylation,
43

 we and others have shown that disease-associated changes in DNA 

methylation can be identified in peripheral tissues.
11-13,17-19,44-47

 Although these might not be directly 

involved in disease pathogenesis, they are of potential use as biomarkers of disease. Furthermore, in this 

study we confirmed disease-associated hypomethylation of our top-ranked DMP (cg23933044) using 

post-mortem PFC samples from schizophrenia patients, indicating that locus-specific methylation patterns 

identified in peripheral tissue may sometimes reflect disease-associated variation in the brain. Other 

DMPs identified in the buccal samples from our twins, however, were not confirmed in post-mortem brain 

tissue. Additionally, given that our sample were only aged 12 we cannot rule out the possibility that the 

unaffected co-twin might develop psychotic symptoms at a later age. 

Technical validation, using bisulfite pyrosequencing, of our top-ranked DMP (cg23933044) was 

not performed in this study. We and others have previously successfully technically validated DNA 

methylation levels obtained from the 450K array using pyrosequencing, thus highlighting the reliability of 

this array.
18,19,48,49

 Moreover, the analytical sensitivity of bisulfite pyrosequencing is ~5–10% for individual 

CpG dinucleotides
50

 and, thus, does not have the sensitivity required to detect small (<5%) changes in 

DNA methylation between cases and controls. Hence, we sought to replicate our DNA methylation 

findings using two independent brain cohorts instead of technically verifying our results. We believe this 

approach is more applicable to the current study given the small changes in DNA methylation (∆β=0.034) 

observed between discordant MZ twins. However, we only used brains from patients diagnosed with 

schizophrenia and although childhood psychotic symptoms have been shown to be highly predictive of 

the later development of schizophrenia
3,36

 they have also been shown to be associated with other mental 

health problems in adulthood
3
 and, thus, exploration of how our findings replicate in the brains of patients 

with other psychiatric disorders would be useful. One final caveat in this study is that chorionicity data 

were not available on these twins; a potential limitation, given that whether or not MZ twins share a 

placenta may influence epigenomic and transcriptional differences mediated by subtle differences in the 

prenatal environment.
51 
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Despite these limitations, this paper provides a useful template for future epigenetic studies of psychiatric 

and behavioral phenotypes. First, employing a discordant twin design allowed us to control for genotype, 

age, sex, paternal age, population cohort effects, and exposure to several shared environmental factors 

(e.g., passive smoking within the home). Second, we utilized longitudinally collected data, which enabled 

us to compare within-individual differences over time and ascertain the temporal ordering of methylation 

differences and emergence of the phenotype. Finally, we attempted to perform cross-tissue replication of 

our peripheral tissue findings in post-mortem brain tissue samples. Incorporating the experimental design 

and analyses utilized in this study would strengthen future research efforts examining the role of 

epigenetic processes in the onset of mental health difficulties. 

Conclusion 

In summary, we present the first evidence that site-specific epigenetic variation may be associated with 

childhood psychotic symptoms in peripheral DNA samples from symptom-discordant MZ twin pairs. The 

top-ranked psychosis-associated DMP (cg23933044) identified in this study was also significantly 

hypomethylated in the prefrontal cortex of adult schizophrenia patients compared to age-matched control 

subjects, suggesting that some peripheral biomarkers of disease may reflect later disease-associated 

variation in the brain. 

 

Materials and Methods 

Study cohort 

Participants were recruited from the Environmental Risk (E-Risk) Longitudinal Twin Study, which tracks 

the development of a birth cohort of 1,116 British twin pairs (n=2,232 individuals). The E-Risk sample was 

drawn from a larger representative birth register of same-sex twins born in England and Wales in 1994-

95.
52

 Full details about the sample are reported elsewhere.
53

 The sample includes 55% MZ and 45% 

dizygotic twin pairs. Sex is evenly distributed within zygosity (49% male). The children were originally 

seen when they were aged 5 and follow-up home visits took place when they were aged 7 (98% 

participation), 10 (96% participation), and 12 (96% participation) years. The Joint South London and 

Maudsley and the Institute of Psychiatry Research Ethics Committee approved each phase of the study 
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(NRES 1997/122). Parents gave informed consent at every phase and children gave assent at the age-12 

assessment phase. 

Measures 

DNA samples 

Buccal cell samples were obtained from children during home visits at ages 5 and 10. Genomic DNA was 

isolated from buccal cells using a standard procedure.
54

 DNA was tested for degradation and purity using 

spectrophotometry and gel electrophoresis prior to methylomic profiling. 

Childhood psychotic symptoms 

When the children were 12 years-old, psychotic symptoms were assessed in a private individual 

structured interview conducted by mental health trainees or professionals.
1,55

 Interviewers had no prior 

knowledge about the child. Seven psychotic symptoms were investigated related to delusions and 

hallucinations using items from the Dunedin Study‘s age-11 interview protocol
36 

and the Avon 

Longitudinal Study of Parents and Children interview.
37,38

 Our protocol took a conservative approach to 

designating a child‘s report as a symptom. First, when a child endorsed any symptom, the interviewer 

probed using standard prompts designed to discriminate between experiences that were plausibly real 

(e.g., ―I was followed by a man after school‖) and potential symptoms (e.g., ―I was followed by an angel 

who guards my spirit‖) and wrote down the child‘s narrative description of the experience. Interviewers 

coded these descriptions 0, 1, or 2, indicating, respectively, ―not a symptom,‖ ―probable symptom,‖ and 

―definite symptom.‖ Second, a psychiatrist expert in schizophrenia, a psychologist expert in interviewing 

children, and a child and adolescent psychiatrist reviewed all the written narratives from the interviews to 

confirm the interviewers‘ codes. Third, experiences limited to the twin relationship (e.g., ―My twin and I 

often know what each other are thinking‖) were coded as ―not a symptom.‖ A dichotomous variable was 

created representing children who reported no definite psychotic symptoms (n=2,002, 94.1%) and those 

who reported at least one definite psychotic symptom (n=125, 5.9%). Of these, 25 MZ twin pairs were 

discordant for the presence of a definite psychotic symptom at age 12, and of these pairs, 16 (64%) were 

male, all were Caucasian and UK-born. None of the twins in this sample took any medications for 

emotional, behavioral, or psychiatric conditions during childhood. 
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Potential confounders 

Internalizing and externalizing problems at age 10 were assessed using the Child Behaviour Checklist in 

face-to-face interviews with mothers
56

 and the Teacher‘s Report Form by mail for teachers.
57

 The 

internalizing problems scale is the sum of items in the withdrawn and anxious/depressed subscales, and 

the externalizing problems scale is the sum of items from the aggressive and delinquent behavior 

subscales. We summed and standardized mothers‘ and teachers‘ reports to create cross-informant 

scales. At age 12, children completed the Children‘s Depression Inventory (CDI),
58

 with scores of 20 or 

more indicating clinically significant depressive symptoms.
59

 

DNA Methylomic Profiling 

Genomic DNA (500 ng) was treated with sodium bisulfite using the EZ-96 DNA Methylation Kit (Zymo 

Research, CA, USA) following the manufacturers‘ protocol. DNA methylation was quantified using the 

Infinium HumanMethylation450 BeadChip array (Illumina, Inc., San Diego, California), as previously 

described.
60 

Each MZ twin pair was processed together throughout the entire experimental procedure to 

minimize potential within-pair batch effects, with all samples processed blind to phenotype. Genome 

Studio software (Illumina, Inc.) was used to extract signal intensities for each probe and perform initial 

quality control (QC). Further QC checks, quantile normalization, and separate background adjustment of 

methylated and unmethylated intensities of type I and II probes were undertaken using the ‗dasen‘ 

function in the R wateRmelon package (available from www.bioconductor.org).
60

 Samples with >5% of 

sites with a detection P value <0.05 or a bead count <3 in >5% of samples were removed from further 

analysis, together with their co-twin. Non-specific probes and probes on the X and Y chromosomes were 

removed.
61,62

 The final analyses included 391,565 probes, and incorporated data from 18 MZ pairs (36 

individual samples) at age 5 and 24 MZ pairs (48 individual samples) at age 10. Polymorphic single 

nucleotide polymorphism (SNP) control probes (n=65) located on the array were used to confirm 

monozygosity for all twin-pairs included in the final analysis. 

Statistical analyses 

We assessed genome-wide patterns of DNA methylation at ages 5 and 10 in buccal cells from twins who 

went on to report psychotic symptoms at age 12, and their unaffected co-twins. Our primary focus was on 
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within-pair DNA methylation differences detected at age 10, as this was the most proximal sampling 

collection point to when psychotic symptoms were assessed at age 12. All statistical analyses were 

performed using R (version 3.1.1). Our primary analyses employed paired t-tests to identify differentially 

methylated positions (DMPs) between affected (1 or more definite psychotic symptoms at age 12) and 

unaffected (no definite psychotic symptoms at age 12) twin children using DNA collected at age 10. The 

beta value (β) is a ratio between methylated probe intensity and total probe intensities (sum of methylated 

and unmethylated probe intensities) and ranges from 0 to 1. Probes were ranked according to p value 

and Q-Q plots assessed to check for P value inflation (see supplementary figure 1A). For the top-

ranked DMPs (nominal P<5x10
-5

), linear regression was performed to adjust β values for internalising and 

externalising problems at age 10, to check that these difficulties were not accounting for any observed 

DNA methylation differences, together with clinically significant depressive symptoms at age 12, to 

ensure that these symptoms were not confounding the phenotypic difference between the twins. Paired t-

tests were used to examine differences in these adjusted β values between affected and unaffected MZ 

twins at age 10 at the top-ranked DMPs (nominal P <5x10
-5

). Analyses were repeated for buccal samples 

collected at age 5. Intra-individual changes in DNA methylation from ages 5 to 10 were calculated 

(longitudinal ∆β) with differences in longitudinal ∆β between affected twins and their unaffected co-twin 

assessed using paired t-tests. An empirical P value was calculated for top-ranked DMPs (P<0.00005) in 

psychosis-discordant twins at age 10 (n=24 twin pairs) and age 5 (n=18 twin pairs) by randomly assigning 

twin status (affected/unaffected) for 10,000 permutations. An empirical P value was calculated by dividing 

the number of permutations, which were at least as significant as the true result (P<0.00005) by the 

number of permutations performed (10,000). 

The specificity of the 10 top-ranked psychosis-associated DMPs was determined by examining 

within-twin DNA methylation differences at these loci in 20 age-matched concordant unaffected control 

MZ twin pairs, with no history of age-12 psychotic symptoms. The average within-twin ∆β, at these loci, 

was calculated using permutation testing (n=1000). Briefly, concordant unaffected twin-pairs were 

randomly assigned to a dichotomous variable [0 (Twin 1) or 1 (Twin 2)] and the within-twin ∆β (beta value 

of Twin 1 – beta value of Twin 2) was calculated for each twin pair at each probe. Next, the average 
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within-twin ∆β was calculated across all twin pairs at each probe, this was repeated 1000 times. The 

average within-twin ∆β was calculated by taking the average of the permutated within-twin ∆β values 

obtained at each DMP of interest. The average within-twin ∆β for the unaffected concordant twins was 

then compared to the average within-twin ∆β calculated from the discordant MZ twins at each probe of 

interest using a two-sample t-test. 

Gene Ontology Term Enrichment Analysis 

Gene ontology (GO) term enrichment analysis was performed on genes annotated (Illumina UCSC gene 

annotation) to the top-ranked DMPs (nominal P<0.001) using the R package GOseqv1.18.1 (downloaded 

from Bioconductor).
63

 GOseq can be used to correct for the number of Illumina 450K probes in each gene 

during GO term enrichment analysis. The number of probes per gene was calculated in our final dataset 

to create a probability weighting function, which was then used in the GO term enrichment analysis.  

 

Post-mortem brain DNA methylation data 

Prefrontal cortex (PFC) post-mortem brain samples were obtained from 20 schizophrenia cases‘ and 23 

non-psychiatric controls‘ adult brains archived in the London Brain Bank for Neurodegenerative Disorders 

(LBBND) and from 18 schizophrenia cases‘ and 15 non-psychiatric controls‘ brains obtained from the 

Douglas Bell-Canada Brain Bank (DBCBB), Montreal (www.douglasbrainbank.ca) as described in Pidsley 

et al.
10

 Subjects were approached in life for written consent for brain banking, and all tissue donations 

were collected and stored following legal and ethical guidelines (NHS 08/MRE09/38; HTA license:12293; 

University of Exeter Medical School Research Ethics Committee:13/02/009). Briefly, genomic DNA was 

isolated using a standard phenol-chloroform extraction protocol. Schizophrenia patients were diagnosed 

by trained psychiatrists according to DSM criteria. Demographic information for the samples is 

summarized in supplementary table 4. Samples were randomized with respect to gender and disease 

status to avoid batch effects throughout all experimental procedures. All microarray pre-processing and 

data normalization was performed as described above. A fixed effects meta-analysis of the two 

independent schizophrenia brain cohorts was performed using the metacont function from the ―meta‖ 

package in R (http://cran.r-project.org/).
64
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Table 1. The top-ranked DMPs at age 10 in monozygotic twin pairs discordant for psychotic symptoms at 

age 12 

  Age 10 Age 5        

Probe 

ID 

Affe

cted 

Twi

n 

Mea

n 

C

o-

T

wi

n 

M

ea

n 

Me

an 

∆β 

P 

valu

e 

Emp

irica

l P 

valu

e*  

M

ea

n 

∆β 

P 

value 

Hg19 Illumin

a Gene 

Annota

tion 

Pr

ob

e 

Ty

pe 

Gene Annotation 

from GREAT 

(Distance from 

TSS) 

cg239

33044 

0.31

5 

0.

34

9 

-

0.0

34 

6.76

E-

07 

<0.0

001 

0.00

8 

0.5

18 

Chr5:372

49909 

C5orf42 II C5orf42 (-380) 

cg141

33557 

0.79

6 

0.

74

2 

0.0

55 

1.65

E-

06 

<0.0

001 

0.01

7 

0.4

02 

Chr9:113

802005 

  II LPAR1 (-1641) 

cg046

61436 

0.79

5 

0.

75

1 

0.0

44 

1.81

E-

06 

0.00

01 

0.02

3 

0.0

57 

Chr15:79

169207 

MORF4

L1 

II MORF4L1 (+4036), 

CTSH (+68212) 

cg115

18839 

0.37

8 

0.

42

8 

-

0.0

51 

8.11

E-

06 

<0.0

001 

-

0.00

4 

0.7

96 

Chr5:176

216711 

  II UNC5A (-20848), 

TSPAN17 (+142324) 

cg165

08913 

0.76

6 

0.

69

8 

0.0

68 

2.25

E-

05 

0.00

06 

0.01

0 

0.6

72 

Chr11:11

609419 

GALNT

L4 

II CSNK2A1 (-234516), 

GALNTL4 (+34141) 
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cg191

15205 

0.89

9 

0.

87

3 

0.0

26 

2.28

E-

05 

0.00

01 

-

0.00

3 

0.7

41 

Chr5:506

2128 

LOC34

0094 

I ADAMTS16 (-78314) 

cg057

64011 

0.88

0 

0.

90

7 

-

0.0

27 

2.55

E-

05 

<0.0

001 

-

0.00

3 

0.8

24 

Chr10:40

9541 

DIP2C II ZMYND11 

(+183608), DIP2C 

(+326066) 

cg264

03608 

0.30

8 

0.

39

6 

-

0.0

88 

2.58

E-

05 

<0.0

001 

0.03

3 

0.1

29 

Chr17:23

19719 

METT1

0D 

II MNT (-15462), 

METTL16 (+95480) 

cg045

76398 

0.74

7 

0.

70

0 

0.0

47 

3.10

E-

05 

<0.0

001 

0.00

2 

0.8

61 

Chr12:13

2262872 

SFRS8 II MMP17 (-50068), 

SFSWAP (+67238) 

cg169

91886 

0.90

3 

0.

88

8 

0.0

15 

3.58

E-

05 

0.00

03 

-

0.00

1 

0.6

89 

Chr6:118

32079 

  I HIVEP1 (-180644), 

C6orf105 (-52800) 

cg080

61902 

0.84

8 

0.

81

8 

0.0

29

8 

3.71

E-

05 

0.00

01 

0.02

5 

0.1

06 

Chr19:40

169418 

LOC40

0696 

II LGALS14 (-25527), 

LGALS16 (+22861) 

cg274

18099 

0.74

4 

0.

69

0 

0.0

54

1 

3.92

E-

05 

<0.0

001 

-

0.00

9 

0.7

57 

Chr16:88

941395 

CBFA2

T3 

II PABPN1L (-8328), 

CBFA2T3 (+102108) 

cg205

46928 

0.06

8 

0.

05

7 

0.0

10

7 

4.47

E-

05 

<0.0

001 

0.00

1 

0.7

67 

Chr8:271

67985 

PTK2B;

TRIM35 

II TRIM35 (+848) 

Note. Ranked by age-10 P value. ∆β, difference in DNA methylation; DMPs, differentially methylated 

positions; GREAT, Genomic Regions Enrichment of Annotations Tool; Hg19, Human Genome build 19; 

TSS, transcription start site. * An empirical P value was calculated by dividing the number of permutations 
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that are at least as significant as the true result (P<0.00005) by the number of permutations performed 

(10,000). 
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Table 2. The top ranked DMPs at age 5 in monozygotic twin pairs discordant for psychotic symptoms at 

age 12 

  Age 5  Age 10         

Probe 

ID 

Aff

ect

ed 

Twi

n 

Me

an 

C

o-

T

wi

n 

M

ea

n 

M

ea

n 

∆β 

P value Emp

irica

l P 

valu

e* 

 M

ea

n 

∆β 

P 

va

lu

e 

Hg19 Illumin

a Gene 

Annota

tion 

Pro

be 

Typ

e 

Gene 

Annotation 

from GREAT 

(Distance from 

TSS) 

cg150

31661 

0.1

50 

0.

13

0 

0.02

0 

1.26

E-

05 

0.000

1 

 -

0.

00

1 

0.80

5 

Chr1:2383

23226 

FMN

2 

I FMN2 (+1419), 

GREM2 (+518858) 

cg264

32347 

0.0

82 

0.

06

3 

0.01

8 

1.87

E-

05 

0.000

1 

 0.

00

2 

0.50

8 

Chr6:3081

8615 

FLO

T1 

I FLOT1 (-184) 

cg113

56706 

0.0

70 

0.

06

1 

0.01

0 

1.95

E-

05 

<0.00

01 

 0.

00

6 

0.11

3 

Chr20:604

240 

SCR

T2 

I SCRT2 (+582) 

cg160

11679 

0.1

16 

0.

09

4 

0.02

2 

2.59

E-

05 

0.000

2 

 -

0.

00

8 

0.19

0 

Chr1:8549

7983 

C1orf

52 

I SYDE2 (-58668), 

BCL10 (+17191) 

cg214 0.8 0. 0.01 2.64 0.000  0. 0.07 Chr7:1585   II ESYT2 (-196875), 
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80740 99 88

3 

6 E-

05 

2 01

5 

9 11954 VIPR2 (+118455) 

cg103

77582 

0.4

43 

0.

52

0 

-

0.07

7 

3.03

E-

05 

<0.00

01 

 -

0.

04

0 

0.04

7 

Chr12:498

99061 

POU

6F1 

I POU6F1 (-20845), 

DAZAP2 

(-19713) 

cg240

85426 

0.8

63 

0.

83

9 

0.02

4 

3.05

E-

05 

0.000

1 

 0.

00

6 

0.50

6 

Chr12:458

69545 

  II AMIGO2 (-109545), 

FAM113B 

(-26726) 

cg030

44239 

0.0

72 

0.

08

0 

-

0.00

8 

3.15

E-

05 

<0.00

01 

 -

0.

00

3 

0.52

9 

Chr3:1395

49743 

MRA

S 

II MRAS (-454) 

cg065

47771 

0.0

44 

0.

05

2 

-

0.00

8 

3.34

E-

05 

0.000

1 

 -

0.

00

2 

0.36

6 

Chr11:433

36969 

TTC1

7 

I TTC17 (-41) 

cg146

59771 

0.1

38 

0.

11

4 

0.02

4 

3.59

E-

05 

<0.00

01 

 0.

00

5 

0.39

1 

Chr2:2316

25606 

  I PSMD1 (-4215) 

cg243

91460 

0.5

25 

0.

46

2 

0.06

2 

4.12

E-

05 

<0.00

01 

 -

0.

00

5 

0.79

3 

Chr7:7892

2102 

MAG

I2 

I MAGI2 (-1277) 

Note. Ranked by age-5 P value. ∆β, difference in DNA methylation; DMPs, differentially methylated 

positions; MZ, monozygotic; GREAT, Genomic Regions Enrichment of Annotations Tool; TSS, 

transcription start site. * An empirical P value was calculated by dividing the number of permutations that 
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are at least as significant as the true result (P<0.00005) by the number of permutations performed 

(10,000). 
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Table 3. The top ranked CpG sites that show changes in DNA methylation levels between ages 5 and 

age 10 in the monozygotic twins discordant for psychotic symptoms at age 12 

Probe 

ID 

Affec

ted 

Twin 

Mean 

Co-

Twi

n 

Me

an 

Mean 

change 

in 

longitu

dinal ∆β 

P 

value 

Hg19 Illumin

a Gene 

Annota

tion 

Pro

be 

Typ

e 

Gene Annotation from 

GREAT (Distance from 

TSS) 

cg1579

7527 

0.044 -

0.0

40 

0.084 4.30E

-06 

Chr6:1358

14781 

AHI1 II AHI1 (+4121), MYB 

(+312329) 

cg1005

2038 

0.040 -

0.0

36 

0.076 7.91E

-06 

Chr3:1962

93939 

WDR53 II FBXO45 (-1785) 

cg2740

3609 

-

0.016 

0.0

28 

-0.044 1.14E

-05 

Chr2:1110

1403 

  I PQLC3 (-194136), KCNF1 

(+49341) 

cg1155

6416 

-

0.034 

0.0

41 

-0.074 1.35E

-05 

Chr2:1918

79252 

STAT1 I STAT1 (-277) 

cg1356

7282 

0.023 -

0.0

43 

0.066 1.40E

-05 

Chr6:1496

53214 

MAP3K

7IP2 

II TAB2 (+13779), ZC3H12D 

(+152933) 

cg1959

9395 

0.066 -

0.0

07 

0.073 1.40E

-05 

Chr19:383

7031 

ZFR2 II MATK (-50617), ZFR2 

(+31995) 

cg2699

8693 

-

0.024 

0.0

13 

-0.036 1.54E

-05 

Chr6:1328

34590 

STX7 II STX7 (-254) 

cg1905 0.037 - 0.089 1.76E Chr2:1138 IL1F5 II IL1F10 (-5456), IL36RN 
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0351 0.0

52 

-05 20090 (+3406) 

cg1826

0625 

-

0.011 

0.0

15 

-0.027 1.87E

-05 

Chr5:4295

1192 

  I SEPP1 (-139169), C5orf39 

(+89254) 

cg1429

7966 

-

0.003 

-

0.0

57 

0.055 2.40E

-05 

Chr9:3510

1708 

STOML

2 

II PIGO (-5163), STOML2 

(+1445) 

cg0252

4205 

-

0.038 

0.0

54 

-0.091 2.51E

-05 

Chr6:1675

59851 

  I GPR31 (+11467), CCR6 

(+34557) 

cg1273

0562 

-

0.025 

0.0

41 

-0.067 2.87E

-05 

Chr11:449

27876 

TSPAN

18 

II TP53I11 (+44731), 

TSPAN18 (+141901) 

cg2282

7324 

-

0.017 

0.0

22 

-0.039 3.31E

-05 

Chr2:3361

2876 

LTBP1 II RASGRP3 (-126065), 

LTBP1 (+440508) 

cg2661

3742 

0.015 -

0.0

53 

0.068 3.42E

-05 

Chr19:142

25000 

PRKAC

A 

II SAMD1 (-23769), PRKACA 

(+3558) 

cg0335

9468 

0.014 -

0.0

08 

0.023 3.62E

-05 

Chr8:2624

0463 

BNIP3L I BNIP3L (-59) 

cg2536

7206 

0.038 -

0.0

20 

0.059 3.82E

-05 

Chr8:1422

39055 

SLC45A

4 

I SLC45A4 (-383) 

cg0391

6630 

0.053 -

0.0

40 

0.092 4.01E

-05 

Chr10:450

65415 

  II TMEM72 (-341348), 

CXCL12 (-184871) 
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Note. Ranked by P value (P<5x10
-05

). ∆β, difference in DNA methylation; DMPs, differentially methylated 

positions; GREAT, Genomic Regions Enrichment of Annotations Tool; Hg19, Human Genome build 19; 

TSS, transcription start site. 
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Figure 1. A, Graphs showing the difference in DNA methylation (∆β) at age 10 between each pair of 

monozygotic (MZ) twins discordant for psychotic symptoms at age 12 (affected twin – unaffected co-twin) 

for each of the ten top-ranked probes. Mean within-twin pair ∆β across all 24 MZ twin-pairs is highlighted 

in red. Consistent within-twin pair differences in DNA methylation at age 10 are observed across 

discordant MZ twin pairs (n=24) at the ten top-ranked differentially methylated positions (DMPs). B, 

Graph showing average within-twin beta difference (∆β) of psychosis-discordant MZ twins at age 10 and 

the age-matched concordant unaffected MZ twins (20 twin pairs). DNA methylation levels were available 

for 9/10 psychosis-associated DMPs. Average within-twin differences in DNA methylation are significantly 

larger (P<0.005 for all comparisons) at nine of the top-ranked DMPs in psychosis-discordant twins 

compared to twins concordant for no psychotic symptoms. Between groups comparison of mean within-

twin beta differences was examined using a two-sample T test. Error bars represent +/- the standard 

deviation of the mean within-twin pair ∆β. 
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Figure 2. The top-ranked differentially methylated probe (cg23933044) is consistently hypomethylated at 

age 10 in monozygotic (MZ) twins with age-12 psychotic symptoms compared to their unaffected co-twin, 

and is also hypomethylated in adult prefrontal cortex (PFC) post-mortem tissue from schizophrenia 

patients compared to matched control subjects. A, CpG site, cg23933044, is consistently hypomethylated 

at age 10 across 24 MZ twins discordant for psychotic symptoms at age 12 (P=6.76x10
-7

) B, Comparison 

of DNA methylation at cg2393304 in 38 schizophrenia and 38 control post-mortem PFC samples confirms 

psychosis-associated hypomethylation (P=0.0005). C, Forest plot depicting a fixed-effects meta-analysis 
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of a comparison of two independent schizophrenia brain cohorts: London Brain Bank for 

Neurodegenerative Disorders (LBBND) and Douglas Bell-Canada Brain Bank (DBCBB). Squares: mean 

beta difference, Horizontal lines: 95% confidence intervals (CI): Blue diamond: overall mean beta 

difference for meta-analysis, SE: Standard Error, df: degrees of freedom, H P value: Heterogeneity P 

value, Q: chi-squared statistic, I
2
: percentage of the variability in effect estimates that is due to 

heterogeneity rather than sampling error. 
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